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A model is developed connecting the stress intensity factor K~ with the propagation rate dh/dt of slow 
cracks. The model is based on the concept of the chain relaxation capability. Experimental K l v e r s u s  dh/dt 
data are reported for polyethylenes of varying molecular mass M, density p, initial notch length h o and 
at different stress levels a. Predictions of the theory concerning the effect of each of these parameters on 
crack propagation are confirmed by the experimental results. In particular, the equation for K~ as a function 
of dh/dt does not contain h o nor a. Experimental plots of Kt versus dh/dt for common M but different h o 
values coincide into a single curve. Also plots for specimens of the same class but subjected to different 
stress levels form a single curve. 

(Keywords: polymeric materials; slow crack propagation; polyethylene; mechanical properties; stress intensity factor; chain 
relaxation capability) 

I N T R O D U C T I O N  

Failure of polymeric materials and components  occurs 
often at relatively insignificant stress levels, far below the 
tensile strength. One class of reasons for this involves a 
variety of environmental effects producing structural 
changes: penetration of liquid and vapour  condensates 
into the material, irradiation from Sun or other light 
sources, nuclear radiation, and so on. The second class 
of reasons is related to the presence of flaws, inclusions 
and other stress concentrators in the material, typically 
introduced during processing, which in service can grow 
and result in shear bands, crazes and cracks. In this paper 
we are concerned with the most dangerous kind of flaws, 
namely cracks, and with their behaviour as a function of 
time. 

Two key problems exist here. The first, that of rapid 
crack propagat ion (RCP), was studied in an earlier 
paper1; a quantitative criterion was developed enabling 
the prediction of RCP occurrence. In the present work 
we deal with the second and much more frequent problem 
of slow crack propagation.  Polyethylene (PE) specimens 
were tested in tension under constant loads at a constant 
temperature;  this was done in a water medium, which 
assured good temperature uniformity. The stress intensity 
factor K, was determined as a function of the crack 
propagat ion rate dh/dt, where h denotes the crack depth 
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and t time. Molecular mass M, sample density p, initial 
notch length he and stress level a were varied in turn. 

Quantitative predictions of crack propagat ion in terms 
of the parameters named above involve the use of fracture 
mechanics (FM). FM was developed first for metals; 
connectedness of atoms in polymeric chains is not taken 
into account at all. Hence FM deals in a natural way 
with elasticity and plasticity rather than with visco- 
elasticity. At the same time, it is possible to deal 
simultaneously with more than one class of materials - 
provided interactions are properly taken into account. 
For  instance, Kubfit and collaborators 2-5 developed a 
cooperative theory of flow, leading to stress relaxation 
relations. While derived for polymers, the theory provides 
a relation applicable also with good results to metals. As 
another example, fracture-mechanical stress concentra- 
tion factor contains essential characteristics of destructive 
processes occurring in polymers on impact. Simul- 
taneously, non-destructive processes are characterized by 
the chain relaxation capability 6 (CRC; in German,  die 
Kettenrelaxationsfiihigkeit = KRF), which is related to 
free volume v f and to the temperature shift factor a t .  
Competi t ion between these two classes of processes is 
the basis of a model of impact behaviourT; the theory 
connects stress concentration factors with impact transi- 
tion temperatures. Predictions for low-density PE give 
satisfactory results. Conversely, v f and polymer density 
can be calculated from impact data 8. 

In the present work we again take advantage of fracture 
mechanics in conjunction with the concept of chain 
relaxation capability. We develop a model first. Then, 
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we report experimental results obtained following a 
procedure devised by one of us 9. Finally, model predic- 
tions are compared with the experimental findings. 

THEORY 

The starting point is the definition of the stress intensity 
factor; see for instance a lucid review of FM by Pascoe 1° 
or an article by Provanl~: 

K I = ot*Tzl/2ahl/2 (1) 

K I is the stress intensity factor, which characterizes the 
stress distribution field near the crack tip, with the index 
I referring to the opening or tensile mode of crack 
extension; ct* is a geometric factor appropriate to the 
particular crack and component shape; a is the stress 
level; and h is the length or depth of the crack. The 
growth of the crack is characterized by the time derivative 
dh/dt .  Of particular interest is the connection between 
K I and the rate dh/dt .  As noted also by Pascoe, the stress 
intensity factor should not be confused with the stress 
concentration factor; traditionally, both have not only 
similar names but also are represented by similar 
symbols. 

FM provides us also with the Griffith equation (e.g. 
see again Pascoe9): 

a ,  = (2FE/nh)  1/2 (2) 

Here a ,  is the critical stress above which crack 
propagation occurs for given surface energy per unit area 
F and Young's modulus E. Equation (2) is applicable to 
the linear-elastic case in a straightforward manner. In 
view of earlier work and the discussion in the Introduc- 
tion, we assume that the relation is applicable also to 
polymeric materials, but with appropriate definitions of 
the parameters. We recall 6 that C R C  is equal to the 
amount of external energy dissipated by relaxation per 
unit time per unit weight of the polymer. Relaxation 
includes here conformational changes, segment vibra- 
tions transmitted along a given chain as well as to 
neighbouri_ng chains; a_nd also elastic energy storage 
resulting from bond stretching and angle changes. 
Clearly, average C R C  in the material is different from a 
local value around the crack tip. The critical stress for 
propagation a~ involves factors producing local CRC,  
as well as long-range ones. As for local behaviour, we 
recall the theory of plastic flow of Argon 12'~3 involving 
an analysis of local chain alignment. The long-range role 
is played by tie molecules, which prevent brittle slow 
crack fracture; the problem was analysed by Lustiger and 
his colleagues ~4-16. Moreover, we know that crazes play 
a role in crack propagation, a topic reviewed for instance 
by Kausch TM. A transition from crazing to shear 
deformation caused by an increase in network strand den- 
sity was demonstrated by Kramer and collaborators a 9.20 
for homopolymers, copolymers and blends. The strand 
is a portion of a chain bounded by entanglements or 
crosslinks. Entanglements are also important in fatigue 
crack propagation. Hertzberg 2~ notes that their role 
becomes larger with an increase in molecular mass. Thus, 
F represents several factors; for a crack to propagate, 
energy has to be furnished for these various dissipative 
processes plus the energy necessary to break primary 
chemical bonds. F contains more than the critical energy 
release rate Gc (refs. 10, 11) and we recall that the latter 
was basically defined for brittle materials. We could have 

worked with the J-integral, but that would require 
additional assumptions. Finally, we note important work 
of D611, K6ncz61 and Schinker 22 on crack propagation 
in fatigue loading; they established that the modulus E 
is a constant, independent of crack speed. Hence, the 
entire product 2FE in equation (2) is a material property. 

Information pertinent for the significance of our ac, 
and F at the molecular level comes from computer 
simulations z3-25. Under load, when a primary chemical 
bond such as C-C is broken, the adjacent polymer 
segments perform oscillations, with the amplitude de- 
creasing with time. Segments further away from the 
broken bond perform similar but smaller oscillations. If 
the amount of free volume in the material is low, the 
oscillation frequency is high, as well as vice versa 24. After 
some time, the oscillations subside; the segment finds for 
itself a new location consistent with the forces applied. 
Clearly, such oscillations provide a contribution to CRC.  
In stress-strain simulations z5 in which a double-well 
potential enables conformational changes, the plateau of 
the diagram corresponds to a large number of conver- 
sions of the gauche-trans type. When the number of 
conversions that are still possible becomes low, the 
plateau ends. 

Apart from the molecular dynamics simulations, 
conformational transitions can be studied in terms of the 
internal orientational autocorrelation function (OACF).  
Bahar and Erman 16 evaluated O A C F  for a complete set 
of transitions between conformers by using a scheme of 
Jernigan zT. They conclude that there exists only a single 
value of activation energy for transitions in carbon 
chains, regardless of sequence size and constraints due 
to chain connectivity. In addition to all of the above, 
creating new surfaces during crack propagation is of 
course determined mainly by breaking primary chemical 
bonds such as C-C, not unlike breaking metallic or ionic 
bonds in non-viscoelastic materials. Thus, both ac, and 
F depend on the same set of factors for a viscoelastic 
material; and both reduce to the quantities originally 
defined by FM for the linear-elastic case. 

We are now in a position to ask a different question: 
For a given imposed stress a, what is the critical crack 
length her above which crack propagation will occur? Of 
course, h~r so defined is independent of time. In other 
words, equation (2) is concerned with the situation when 
for a given material (given F and E) and given crack 
length h we increase the stress until crack propagation 
occurs at a , .  Now we consider an inverse situation when 
the stress level is fixed while we increase the notch length 
until crack propagation occurs at a value to be denoted 
by h,~. In analogy to equation (2) generalized to include 
chain systems, we now write: 

h¢~ = 2 F E / n a  2 (3) 

In view of equation (3), when crack propagation does 
occur, its rate dh/d t  should be related to the excess of 
the crack length at any given time h(t) over the critical 
length. The already mentioned molecular dynamics 
simulations produce crack propagation in certain cases; 
a crossover exists from the region dominated by chain 
relaxation to the other region in which crack propagation 
does occur 24. One also recalls an analysis by Kubfit 3 
of elementary events (transitions) accumulating to 
produce a macroscopic process. We assume a direct 
proportionality: 

dh/d t  = fl(h - h¢,) when h ~> he, (4) 
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Here /3 is a time-independent proportionality factor 
characteristic for the material, related to C R C  and 
dependent on the applied stress a. 

We now denote h(0) by ho. Rearranging equation (4) 
and integrating we obtain: 

h = her + (h o -- hcr) e t~' (5) 

an important result. The crack propagation rate is, 
therefore: 

dh/d t  =/3(h o - her)e t~' (6) 

We can now connect the stress intensity factor, 
equation (1), with the crack growth. By using equations 
(5) and (3) we arrive at: 

K l = ct*(2FE)I/2[1 + (ho/her - 1)e#t] U2 (7) 

We see that in equation (7) the stress is represented by 
the critical crack length her; the latter can be obtained 
from the former via equation (3). Thus, equation (7) tells 
us that the dependence of K~ on a appears only in the 
time-dependent factor. 

Inverting equation (7) and using equation (6), so as 
to have an explicit expression for the crack propagation 
rate, is also of interest: 

dh/d t  =/3h.(KZ~/~*22FE - 1) (8) 

Except for K~, all factors on the r.h.s, of equation (8) are 
time-independent. 

Consider now a series of cases when we have specimens 
of a polymer of the same type, but differing in mass 
density p, that is in d. This at a constant temperature, 
so that the thermal energy is not affected, while typically 
the degree of crystallinity is. From the definition of the 
proportionality factor /3, equation (4), we infer that /3 
should decrease when C R C  increases; under the same 
conditions her should increase. Hence approximately: 

C R C  ~ V f ~ p - 1 ~ / 3 -  1 ~ he r (9) 

If the stress level and crack length have common values, 
that is all specimens have the same value of K~, we find 
from proportionality (9) and equation (8) that the 
derivative dh/d t  should go symbatically with polymer 
density. 

Apart from the free volume, another parameter that 
should affect the relationship between K~ and dh/d t  is 
the relative molecular mass M. In a study of fatigue crack 
propagation (FCP)o f  poly(vinyl chloride) (PVC), Hertz- 
berg and collaborators 2s'z~ found a 1000-fold decrease 
in FCP rates when M of PVC increased approximately 
by a factor of 3. We know from the extensive work of 
Flory and others on the rotational isomeric state model 
of chain molecules how rapidly the partition function 
increases with the degree of polymerization, that is with 
M (see Ch. III in ref. 29; for a succinct review see 
Mattice3°). Thus, because of conformational rearrange- 
ments as well as entanglements, C R C  should increase 
along with molecular mass; for a constant K~ value but 
different M values, low dh/d t  values will be associated 
with high M, as well as vice versa. Another important 
component of the relaxation is the transmission of energy 
along the chain, including exchange with neighbouring 
chains, and producing among others intensified vibra- 
tions of the segments. We know from a neutron scattering 
study of Fujara and Petry 3~ over temperature ranges 
including the glass transition region that the frequency 
of vibrations does not change with T, but the amplitude 

does. As seen in molecular dynamics simulations 24, stress 
states affect the vibrations similarly as a temperature 
increase. Thus, conclusions reached on the basis of 
considerations of conformational changes, entanglements 
and vibrations are the same. On all these grounds: 

M ~ C R C  ~ /3 -1  (lO) 

and at a fixed K~ an increase in M should bring about 
a decrease of the crack propagation rate. 

In view of equation (7), we now return to equation (6) 
and obtain therefrom: 

(1//3hcr)dh/dt = (ho/h~r-  1)e #' (11) 

The last result substituted into equation (7) provides 
a convenient expression for K I in terms of dh/dt .  
Since experimentalists customarily use logarithmic co- 
ordinates, we write: 

1 1 
log K, = ~ log(~*22FE) + ~ log[1 + (1//3h~) dh/dt] 

(12) 

We find from equation (6) that dh/d t  depends on h 0, 
as indeed expected. Much less expected is another 
consequence of our model visible from equation (12): for 
specimens of the same material but different initial crack 
lengths, plots of K~ versus dh/d t  should produce a 
common curve, independent of ho. 

Consider now a material to which a high value of stress 
has been applied. From the crack propagation rate 
formula, equation (4), we infer that/3 will be high also. 
At the same time, according to equation (3), her will be 
low. The same argument applies also in reverse: low 
stress is connected with low/3 and high her. Since/3 and 
her vary in the opposite directions, if their variation rates 
are comparable, we should have: 

/3her=c (13) 

so that c for a given material would be a constant 
independent of the stress level. It should be noted that 
equation (13) is not a direct consequence of the theory 
developed above which produced equation (12) but an 
additional assumption albeit a plausible one. If 
equation (13) were true, plots of K l versus dh/d t  should 
be independent of the stress level. We shall find to what 
extent the main predictions of our model, as well as 
relation (13), are confirmed by the experimental results. 

EXPERIMENTAL 

We have studied PE homopolymers of medium molecular 
mass M, but several M values. Measurements of viscosity 
t/ were made in decahydronaphthalene at 135°C, in the 
same way as in an earlier study by one of us 32 of viscosity 
of PE melts and its relationship to the intrinsic viscosity 
[q] of solutions. We have now obtained the Staudinger 
index (intrinsic viscosity) [q]; gel permeation chromato- 
graphy has provided molecular mass distributions. 

One PE sample, call it A, had Mn=9.0  x 104 , 
M w / M  n ~ 5.5, I-q] = 195 cm 3 g -1  and p = 0.960 g cm -3. 
Sample B has Mn= 1.65 x l0 S , M w / M n = 5 . 5 ,  [r/] = 
295 cm 3 g-  1 and p = 0.955 g cm-  3. For  sample C the 
values are, in the same order: 2.45 x 105, 5.5,395 cm 3 g-  1 
and 0.951 g c m  -3. 

Materials for testing in the form of sheets were obtained 
by compression moulding under identical conditions. 
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Tensile specimens, saw-cut from the sheets, with 
dimensions 70 x 30 x 4 mm 3, clamped length of 50 mm, 
were provided with a single-edge notch (SEN) each. 
Initial length of the notch h o was varied between 1.1 and 
4.4 mm. Slow crack propagation was studied under 
tension in water at 60°C. Applied stresses varied between 
0.7 and 2.1 J cm -3 (advantages for working with this 
pressure unit are discussed in section 5.3 of ref. 33; 
1 J c m -  3 = 1 MPa). 

The experimental set-up was such that crack propaga- 
tion was easily followed laterally with a microscope. As 
noted elsewhere 9, already preliminary results had shown 
that the crack growth rate, dh/dt in our terminology, is 
governed by the stress intensity factor K I. Values of KI 
were computed from equation (1), with the geometric 
factor ct* calculated for the SEN case as prescribed by 
the ASTM 34. 

RESULTS AND DISCUSSION 

First of all, we note that experimental studies of slow 
crack growth are vastly different from those of rapid 
crack propagation. In RCP studies, changes in crack 
length with time are determined after a knife is pushed 
through a pressurized pipe by a falling weight 35'36'1, and 
velocities up to 400 m s- ~ were reported. In the present 
study, crack growth rates are lower by several orders of 
magnitude. Origins of slow cracks require further studies; 
presumably processing, subsequent transportation and 
handling, as well as environmental effects, are involved. 
Criens and Mosl~ 37 as well as Criens 38 provide recom- 
mendations for minimizing effects of knit lines in injection 
moulding. The recommendations make possible con- 
siderable reduction - but not complete elimination - of 
processing-introduced structural inhomogeneities. 

Effects of molecular mass, that is results for samples 
A, B and C, are shown as K 1 versus dh/dt curves in Figure 
I. Full curves are calculated by using equation (12), 

points represent experimental values. The data for sample 
A, in part reported before 9, are the most extensive and 
include a number of stress levels, as well as a number of 
initial notch lengths ho. For each curve, one kind of 
symbol, such as filled triangles, corresponds to a single 
value of h o and tr. 

We now analyse the experimental results in terms of 
predictions from the theoretical model in the earlier 
section, qualitatively at first. The following observations 
are in order: 

(i) At a constant level of the stress intensity factor, an 
increase in the chain length, that is in M, produces a 
decrease in the crack propagation rate. This is precisely 
what equation (8) in conjunction with the proportionality 
(10) have told us. 

(ii) As predicted by equation (12), for a given class of 
specimens (common value of M) such as A, the initial 
crack length h o does not affect the K l versus dh/dt 
relationship. Results for different ho values can be 
represented by a common curve virtually within the limits 
of experimental accuracy. 

(iii) An additional conjecture from the model, equa- 
tion (13), is also confirmed by the experimental results. 
Again within the limits of experimental accuracy, plots 
of K1 versus dh/dt for specimens of the same class but 
subjected to different stress levels can be represented by 
a single curve. 

Calculations were made by using equation (12) for 
curves A, B, and C. The resulting values of ~*(2FE) 1/2 
are 1.01, 1.03 and 1.05 J cm -5/2. Values of flhc, are, 
respectively, 5.33 x 10-% 3.47 x 10 -7 and 1.41 x 10 -T. 
The goodness of fit is represented by A, the root- 
mean-square deviations, 1.24 x 10 -2, 1.35 x 10 -2 and 
4.98 x 1 0 - 3 ;  and by the average percentage differences 
/), 5.50, 4.50 and 1.86%. Here: 

100% --" F. ~xp~r - F.~al~l 
5 - -  ~ - - '  ' ( 1 4 )  

n i= 1 Fexpe' 

10 
5 

J.cm-~ 

- 4 x: 

o 
u 
o 2 

,~.., 

(/I r- 

to 

L .  

0.5 

~7 

. 

o ° A 

T = 60 °C 
w a t e r  

10 -s 5 10 -7 5 10 -~ 5 10 -5 cm/s  5 10 -4 

crock p ropaga t i on  ro te dh/d t  

Figure 1 Stress intensity factor K~ as a function of crack propagation rate dh/dt for specimens of class A, B and C (see 
text) under uniaxial tension in water at 60°C. Full curves are calculated by using equation (12). Each kind of symbol 
pertains to a single value of a and h o. Thus,  for curve A, the values of tr (J cm 3) and h o (mm) are, respectively: 0.74 and 
3.3 for V in lower part of the curve; 1.07 and 2.3 for © in lower part of the curve; 1.24 and 2.0 for o; 1.26 and 2.15 for 
6 ;  1.72 and 1.15 for F-l; 1.68 and 2.0 for A;  1.70 and 2.1 for v in upper part of the curve; 1.69 and 4.35 for © in upper 
part of the curve; and 2.08 and 2.1 for 
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Table 1 Properties of polymer samples and parameters of equation (12) 

Code Density VN [11] 
number p (gcm- 3) (cm a g- 1) (cm 3 g- 1) M c~*(2FE) 1/2 flho, A g (%) 

B1 0.9595 395 350 2.10 x 105 0.90 3.22 x 10 -7 3.75 x 10 -2 12.0 
B3 0.9495 345 295 1.65 x 105 1.23 2.1.4 x 10 - 7  1.85 X 10 -2 7.2 
B6 0.9415 305 290 1.55 x 105 1.50 9.81 × 10 -8 0.98 x 10 -2 2.8 
B7 0.9375 275 255 1.35 x l0 s 1.86 7.67 x 10 -8 3.05 x 10 -2 8.3 

Mw/M, for the sample B1 is 14 __+ 4; for subsequent samples it goes down along with falling density 

105 g=0.%gg/im~ 
J.cm--~ 

I . . . . . . .  l _ > ,  
9=0.937 glcm~..... ' '  . 19 ° /  I ~ I"~ 

:~ - - "  ~ ~ ' ' -  ~. I"~-0=0.959 glcrn3 

" I__i 
T=60 °C, water HFI 19015 =- 1.0 dg/min 

I I 1 -~ 0.5 
5 10 -8 5 10 -7 5 10 -~ cm/s 5 10 -s 

crock propagation rote dh/dt 

Figure 2 Stress intensity factor K I a s  a function of crack propagation rate dh/dt for specimens of varying density. Uniaxial 
tension in water at 60°C. Full curves calculated from equation (12). Characteristics of the materials and parameters of 
equation (12) are provided in Table 1 

and  in ou r  case F = K~ and  the index i runs  over  n __5 
exper imenta l  points .  Thus ,  also:  J .cm 2 

(iv) E q u a t i o n  (12) represents  the measu red  values I 
within the l imits of the exper imenta l  accuracy.  [ 2.0 

Exper iments  were also done  to test the effect of  po lyme r  x -  
densi ty .  The  series was p repa red  with a different cata lys t ,  
with M values also ,,~ 10 5, bu t  a wider  M d is t r ibu t ion ;  ~ 1.5 
one a imed  here at  ma in t a in ing  the melt  index approx i -  ~6 
mate ly  cons tan t .  The  samples  s tudied  are  charac te r ized  in 
Table 1. VN is the viscosi ty number ,  here the so lu t ion  vis- 
cosi ty at  c = 1.0 x 10-  3 g c m -  3 ,  re la ted to the S taudinger  ~ c 1.0 

OJ index by the M a r t i n  equa t ion  39" 

log (VN)  =log[r/] + 0.139[r/]c (15) to 0.8 
to 

The same table  conta ins  ca lcula ted  values of  the 
pa rame te r s  of  equa t ion  (12) as well as A and  /3 
charac te r iz ing  the extent  of  agreement  between calcula-  
t ion and  exper iment .  In  Figure 2 we can see the 
exper imenta l  poin ts  as well as full curves ca lcu la ted  from 
equa t ion  (12). Figure 3 

The results in Figure 2 agree with the findings for the 
series in which M was varied.  Moreove r :  

(v) M o v i n g  hor izon ta l ly  in the d i ag ram,  tha t  is 
ma in ta in ing  K~ cons tan t ,  we find that  the crack  p r o p a g a -  
t ion rate  goes symbat ica l ly  with the po lymer  densi ty.  
This  was pred ic ted  f rom our  model ,  equa t ion  (8) in 
con junc t ion  with p ropo r t i ona l i t y  (9). 

F r o m  the results in Figure 2 one can also de te rmine  
values of K~ co r r e spond ing  to the l imit  of dh/dt tending  

" ~  B 7 

0.930 0.9/,0 

B3 

0.950 g/cm 3 0.960 

density 

Limiting values of stress intensity factor K I for vanishing 
crack propagation rates as a function of polymer density. Code numbers 
explained in Table I 

to zero. These values are presented  graphica l ly  in Figure 
3. F r o m  equa t ion  (8) we ob ta in  

l im KI = ~*(2FE) 1/2 (16) 
dh/dt ~ 0  

In molecu la r  dynamics  s imula t ions  referred to before 24 
we have also seen how an increase in free volume 
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enhances the amplitude of segment oscillations - as 
indeed was to be expected. Since oscillations dissipate 
mechanical energy, when v f increases more energy is 
required for crack propagation, and our generalized F 
must be higher: 

C R C  ~ v f ,,~ F ,,~ p -  1 (17) 

The proportionality (17) resembles (10), except for the 
fact that F and fl are inversely proportional, and that fl 
depends on the stress level while F does not. Now 
relations (16) and (17) imply the direction of the change 
of lim K~ with density. From the results displayed in 
Figure 3 we find that: 

(vi) A prediction from equation (16) in conjunction 
with proportionality (17) is confirmed by the experiment: 
the limiting K~ values for vanishing crack propagation 
rates go down with increasing polymer density. 

CONCLUDING REMARKS 

The role of v f constitutes a leitmotif in our considerations. 
We know how important free volume is for mechanical 
and rheological properties in general, due to work 
by Ferry 4°, Holzmiiller 41, Matsuoka 42'43, Kubfi.t 2-s, 
Struik 44'45 and others. While we are discussing competi- 
tion between C R C  and destructive processes, with the 
C R C  concept defined first in 19856, in 1986 Raab, Schulz 
and Pelzbauer 46 talked somewhat similarly about two 
competing mechanisms: orientational hardening and 
crack propagation. The statement that the stress inten- 
sity factor K~ controls the crack propagation rate dh/d t  
was made and analysed in some detail by Chan and 
Williams 47, and later also by others 4s. Some confusion 
on the validity of this statement resulted, apparently 
because Chan and Williams assumed that K~ is propor- 
tional to (dh/dt)". Consequently, various parts of K~ 
versus dh/d t  curves seemed to show various values of the 
exponent n, and attempts were made to ascribe different 
process mechanisms to these parts. For instance, one 
assumed sharp crack propagation first, blunt crack 
afterwards, and a transition between these two regimes. 
There is, however, no basis for such a proportionality. 

We find that the FM concepts, redefined by us so as 
to include effects other than linear elastic, serve well for 
prediction of slow crack propagation. This agrees with 
earlier work on applications of FM to polymeric 
materials. We recall the results of Kusy and collabora- 
tors 49'5° showing that the fracture surface energy varies 
with M. One expects that our approach should have 
ramifications to other aspects of mechanical behaviour 
of polymers. For instance, molecular factors that led us 
to the proportionality (10) are equally pertinent for the 
problem of impact resistance. Since the critical energy 
release rate Gc goes symbatically with CRC,  G~ has to 
increase with M. This is what one of us has found s 1 from 
measurements of the Charpy impact resistance of a 
variety of polyethylenes, with their structure character- 
ized mainly by the Staudinger index. The same study 51 
has shown that G¢ decreases with increasing density. This 
last finding evidently follows from the first and the last 
members of proportionality (9). 

An interesting study of creep and recovery of ultra- 
high-modulus PE was conducted by Wilding and 
Ward 52'53. They report that the materials showed an 
apparent critical stress below which there was no 

detectable permanent creep. This of course fits well with 
the concept of C R C  as well as with the results presented 
in this work. Wilding and Ward have found an exception, 
namely low-M homopolymers; in turn that result can be 
explained in conjunction with our proportionality (10), 
since C R C  might not manifest itself if the chains are too 
short. 

Highly pertinent for industry is the problem of creep 
rupture strength and ageing of plastic pipes s4"-s6, which 
apparently can be related to time to failure of specimens 
with a circumferential notch 9. As enumerated in the 
previous section, all conclusions from our model of slow 
crack propagation, including the quantitative ones, are 
confirmed by experiment. This requires us to find 
quantitative relations replacing the present proportional- 
ities (9), (10) and (17). 

Since equation (13) has been confirmed by experiment, 
and since equation (12) contains as parameters two 
factors, ~*(2FE) 1/2 and flhor, we would like to connect 
these factors to the chemical structure of the chains, free 
volume and CRC.  Various measures of C R C  are possible, 
but the temperature shift factor ar pertaining to the time 
(t)-temperature (T) superposition was used with good 
results before 6-a. As discussed by Hartmann 57, that 
principle is applicable also to the yield stress ay and yield 
energy Ey. In turn, try is related to free volume v f, or in 
particularly simple cases just to specific volume v 57'58. 
This and proportionality (9) suggest the existence of a 
relationship between fl, hcf, v f and ay. Since v = v* + v f, 
where v* is the characteristic ('hard-core') volume, a 
formula for vf(T) is needed. A number of such relations 
exist, including the generalized Guggenheim formula 59 
used before 8, and the Hartmann equation of state 6°, 
which gives good results for both polymer solids 61 and 
liquids 62. We expect to report a connection between the 
yield stress and the parameters of our crack propagation 
model in a later paper. 
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